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Panagio's	Sidiropoulos	

Introduc'on	to	Data	Mining	

RPIF-3D	workshop	supported	by	Europlanets	&	FP7	i-Mars	project	
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Mars	Orbiters	with	high-resolu'on	visible	cameras	

Spacecra) 
Launch	
date 

Start	
opera2ons Finish 

Camera	
instruments 

Viking	Orbiter	(NASA)	 20-Aug-75	 22-Jun-76	 17-Aug-80	 VIS	(8m-1km)	

Mars	Global	Surveyor	
(NASA) 7-Nov-96 11-Sep-97 5-Nov-06 

MOC-NA	
(1.5m-12m) 

2001	Mars	Odyssey	(NASA) 7-Apr-01 24-Oct-01 N/A 
THEMIS-VIS	
(17m-75m) 

Mars	Express	(ESA) 2-Jun-03 25-Dec-03 N/A HRSC	(11m-100m) 

Mars	Reconnaissance	
Orbiter	(NASA) 12-Aug-05 10-Mar-06 N/A 

CTX	(5-6m),HIRISE	
(0.25m-0.5m) 

Mars	Orbiter	Mission	(ISRO)	 5-Nov-13	 24-Sep-14	 N/A	 MCC	(19.5m	-4km)	

Trace	Gas	Orbiter	(ESA)	 14-Mar-16	 N/A	 N/A	 CASSIS	(4.5m)	
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Mars	orbiters:	high	resolu'on	imaging	data	

Cameras Years Resolution (m) No. Images 

Mariner 9 1971-1972 100-3000 7329 

Viking Orbiter 1 1976-1980 8-1800 ~32000 

Viking Orbiter 2 1976-1978 8-1800 ~15000 

MOC-NA 1997-2006 1.5-12 97097 

MOC-WA 1997-2006 240-7500 146571 

THEMIS 2002- 18-36 ~200000 

HRSC 2004- 12.5-25 ~5000 (nadir) 

CTX 2006- 5-6 ~75000 

HiRISE 2006- 0.25-0.5 ~75000 
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Processes	that	can	be	automated	

1.  Automated	Co-Registra'on	&	Orthorec'fica'on	(ACRO)	
so_ware	
–  8	June	2016	11:30-12:30	

2.  Automated	change	detec'on	from	high-resolu'on	co-
registered	imagery	
–  9	June	2016	10:00-11:00	

3.  Automa'c	planetary	image	quality	assessment	
–  9	June	2016	10:00-11:00	
	

Fundamental	design	principle:	The	developed	so_ware	should	
require	the	minimum	user	involvement	

–  Automa'c	means	that	you	don’t	need	to	spend	hours	tweaking	the	
parameters	each	and	every	'me	
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Preliminary	Analysis	–	Repeat	Coverage	

Objec'ves	
1.  How	many	high-resolu'on	images	are	there	in	total?	

–  Two	different	high-resolu'on	thresholds	(20m/pixel,	100m/pixel)	

2.  How	many	overlap	with	each	other?	
3.  Where	are	the	regions	where	mul'-temporal	analysis	is	

feasible?		
4.  Is	global-scale	change	detec'on	within	reach?	
5.  If	'me/illumina'on	constraints	are	imposed,	is	it	s'll	

possible	to	look	for	dynamic	features	at	a	global	scale	
–  Season-Epoch	that	images	were	acquired	
–  Mean	incidence	angle	constraints	

Pa
ge

 6
 

V
e

rs
io

n:
 0

9/
06

/1
6 

j.m
ul

le
r@

uc
l.a

c.
uk

 

Repeat	coverage	analysis	method	

•  Download	image	footprints	from	ODE:		
–  hgp://ode.rsl.wustl.edu/mars/indextools.aspx?displaypage=footprint	

•  For	each	footprint	
–  Fill	the	footprint	interior	

•  Several	“shape-filling”	algorithms	available	on	the	web	

–  Rasterise	the	footprint:	Using	a	sampling	step	S,	check	if	(i*S,	j*S)	
belong	to	the	footprint	interior	

–  S	=	0.01°,	i.e.	~600m	in	the	equator	
•  Footprints	are	from	the	images	before	the	co-registra'on,	so	finer	rasterisa'on	

would	ignore	the	ini'al	mis-registra'on	errors	of	the	footprint	

•  Collect	all	footprints	of	images	that	sa'sfy	specific	metadata	
requirements	
–  E.g.	epoch,	season,	incidence	angle	

•  Make	a	repeat	coverage	map	
–  Colour	scale	shows	how	many	'mes	a	region	has	been	mapped	
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Metadata	Specifica'ons	

1.  Two	resolu'on	ranges:	(1)	Res<20m,	(2)	100<Res<20m	
2.  Four	“Epochs”:	(1)	Mar'an	Year	10-12,	(2)	Mar'an	Year	

23-25,	(3)	Mar'an	Year	26-28,	(4)	Mar'an	Year	29-31	
1.  Analysis	conducted	two	years	ago,	using	data	up	to	July	2013	

3.  Four	(Northern	hemisphere)	seasons	
4.  Six	Incidence	Angle	ranges:	Step	of	15°	

•  Combining	these	requirements,	tens	of	maps	were	published	
(and	eventually	will	be	released	through	the	webGIS)	
–  Global	maps:	Mollweide	projec'on;	Polar	maps:	Polar	stereographic	
–  In	hgp://www.i-mars.eu/web-gis	the	“High-Res	Repeat	Coverage”	layer	is	the	

one	with	all	images	with	Resolu'on<100m	
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Global	Mars	Surface	Coverage	Sta's'cs	

Camera	 Coverage	(Res<20m)	

VO	1	&	2	 0.56%	

MOC-NA	 5.27%	

THEMIS-VIS	 61.08%	

HRSC	 64.39%	

CTX	 82.71%	

HiRiSE	 1.39%	

Season	(NH)	 Coverage	
(Res<20m)	

Spring	 66.41%	

Summer	 47.79%	

Autumn	 38.16%	

Winter	 49.02%	

Period	 Coverage	
(Res<20m)	

MY	12-14	 0.56%	

MY	23-25	 3.16%	

MY	26-28	 59.93%	

MY	29-31	 88.53%	
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Global	Mars	Repeat	Coverage	Sta's'cs		

•  Resolu'on	<100m:	99.3%	of	Mars	has	been	mapped	more	than	once		
•  Resolu'on	<20m:	96.2%	of	Mars	has	been	mapped	more	than	once		
•  For	~45%	of	Mars	there	is	an	HRSC	ORI	and	DTM	available	

Season Mapped	twice	or	more	(106	km2) Mapped	thrice	or	more	(106	km2) 

NH	Spring 48.3 20.1 

NH	Summer 25.3 8.8 

NH	Autumn 18.8 6.2 

NH	Winter 26.7 9.9 

All	Seasons 121.3 89.0 

Asia:	44.5	M	km2,	Africa:	30.2	M	km2,	N.	America:	24.7	M	km2,	S.	America:	17.8	M	km2,	Antarc'ca:	14M	km2,	Europe:	10.2	M	
km2,	Oceania:	8.5	M	km2 
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Repeat	Coverage	with	Res<20m,	29<MY<31	
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Repeat	Coverage	with	60<Inc_Ang<75,	Res<100m	
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Repeat	Coverage	with	Res<20m,	North	Hemisphere	Summer	
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North-Pole	Coverage	with	Res<20m,	North	Hemisphere	Summer		

You	can	download	30	maps	
from	the	following	link:	
	
	hgps://www.dropbox.com/sh/
imn5cg126r0x4vb/
AADZ0dRGWYwUUcQHZ20KYZI1a?
dl=0	

If	you	use	them,	please	cite:	
P.	Sidiropoulos	and	J.-P.	Muller,	“On	the	status	of	orbital	high-resolu'on	repeat	imaging	
of	Mars	for	the	observa'on	of	dynamic	surface	processes”,	Planetary	and	Space	
Science,	Vol.	117,	pp.	207-222,	2015.	

Pa
ge

 1
4 

V
e

rs
io

n:
 0

9/
06

/1
6 

j.m
ul

le
r@

uc
l.a

c.
uk

 

Conclusions	from	the	ini'al	data	analysis	

1.  There	are	enough	high-resolu'on	image	data	to	perform	batch-mode	
change	detec'on	

2.  There	are	large	regions	of	Mars	where	change	detec'on	can	take	into	
account	addi'onal	constraints,	such	as	the	season	when	the	image	was	
acquired	or	the	incidence	angle	
–  E.g.	3	images	of	resolu'on	finer	than	100m/pixel	for	(North-Hemisphere)	

Spring	exists	for	an	area	that	is	double	the	area	of	Europe	

3.  There	are	large	gaps,	mostly	in	polar	regions	during	night-'me	
–  THEMIS	night	map	has	only	100m/pixel	resolu'on	

4.  Imaging	is	not	homogenous	but	there	are	ROIs	(Regions	of	
Interest)	for	which	much	more	data	exist	
–  Each	point	of	Gale	crater	has	been	mapped	on	average	93.5	'mes	

(Res.<20m),	there	is	s'll	3.8%	of	Mars	that	has	been	mapped	less	than	twice	
with	Res.<20m	
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Automa'c	Planetary	Image	Quality	Assessment	(1)	

•  A_er	exploring	the	dataset	capabili'es,	the	fun	part	can	start	
–  …but	not	yet!	

•  What	about	the	images	of	low	visual	quality?	
–  They	o_en	represent	a	waste	of	'me	(le_	panel)	
–  But	they	may	be	correlated	with	natural	processes	(right	panel)	
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Automa'c	Planetary	Image	Quality	Assessment	(2)	
•  Overall,	the	number	of	high-resolu'on	images	of	low	visual	

quality	is	unknown	
–  We	would	like	to	es'mate	these	and	screen	these	images	
	

Objec'ves	
1.  To	build	so_ware	that	automa'cally	assesses	the	(visual)	image	quality	of	(Mars)	

orbiter	images	
–  Demonstrate	that	planetary	(visual)	image	quality	is	possible	to	be	gauged	with	current	

image	processing	and	pagern	recogni'on	technology	
2.  To	make	this	so_ware	robust,	compact	and	efficient,	so	as	to	be	able	to	“clean	

up”	all	current	Mars	orbital	datasets	within	a	realis'c	'me-frame	
3.  To	build	so_ware	which	determines	the	cause	of	the	visual	quality	degrada'on	

–  Demonstrate	that	the	class	of	low-quality	images	is	separable	into	sub-classes,	each	
expressing	a	dis'nct	image	degrada'on	cause	

4.  To	explore	possible	future	uses	of	this	technology	
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THEMIS:	(Manual)	Quality	Ra'ng	

	
THEMIS-VIS	Image	Ra'ng	1:	
	
	
	
THEMIS-VIS	Image	Ra'ng	2:	
	
	
	
	
THEMIS-VIS	Image	Ra'ng	3:	
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Viking	Orbiter	Missions	

•  Viking	Orbiter	1	&	2:	Twin	missions	
–  Viking	1	

•  Launched:	20	August	1975,	Mars	orbit	inser'on:	19	June	1976,	Worked	un'l	17	August	
1980	

•  Acquired:	~32,000	images	

–  Viking	2	
•  Launched:	9	September	1975,	Mars	orbit	inser'on:	7	August	1976,Worked	un'l	25	

July	1978	
•  Acquired:	~15,000	images	

•  Viking	1	&	2	have	acquired	images	covering	the	en're	Mars	surface	with	
resolu'on	finer	than	1km/pixel	
–  ~27%	of	Mars	surface	with	resolu'on	finer	than	100m/pixel	
–  ~0.6%	of	Mars	surface	with	resolu'on	8-20m/pixel	

•  VIS	imaging	system	(both	in	Viking	1	and	2):	Vidicon	frame	cameras	
–  no	CCD,	no	pushbroom	
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Viking	Orbiter	image	problems	

•  Cameras	were	of	previous	(Cathode	Ray	Tube)	technology	
–  Lotsof	problems	in	correctly	storing	the	representa'on	of	the	images	

•  Burst	Noise	
•  DN	Quan'sa'on	problems	
•  Horizontal	Stripes	
•  Ver'cal	Stripes	
•  Salt	&	Pepper	Noise	
•  Low	contrast	

•  Viking	Orbiter	arrived	in	a	turbulent	Mars	era	
–  Violent	dust	storms	
–  Clouds	causing	gravity	waves	
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“Internal”	Viking	Orbiter	low-quality	images	

Low	Contrast	 DN	Quan'sa'on	 Horizontal	Stripes	

Ver'cal	Stripes	 Salt	&	Pepper	Noise	 Burst	Noise	
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“External”	Viking	Orbiter	low-quality	images	

Clouds	 Clouds	

Dust	 Dust	

Clouds	

Dust	
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Viking	Orbiter	(Manual)	Image	Quality	Annota'on	
•  8,594	Viking	Orbiter	Images	
•  5	star	ra'ng	system	

–  1-star:	Image	with	no	scien'fic	meaning	
–  2-star:	Image	for	which	the	general	idea	of	what	is	depicted	can	be	assumed,	but	significant	

details	are	missed	due	to	quality	degrada'on	
–  3-star:	Image	with	obvious	flaws,	which	however	don’t	degrade/modify/eliminate	the	

largest	image	parts	
–  4-star:	Good	quality	image	with	a	small	number	of	artefacts,	or	medium	contract	or	low	

level	of	noise	
–  5-star:	Good	quality	image	with	high	contrast	and	no	artefacts	

•  Sta's'cs	
–  1-star:	780	(9.1%)	
–  2-star:	1055	(12.3%)	
–  3-star:	1615	(18.8%)	
–  4-star:	2939	(34.2%)	
–  5-star:	2205	(25.7%)	
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Viking	Orbiter	(Manual)	Image	Quality	Annota'on	
•  From	1,835	low-quality	images	(1-star	and	2-star	images)	we	found	how	

many	have	the	predetermined	low-quality	pagerns	
–  Dust:	822	
–  Low	Contrast:	301	
–  Salt	and	Pepper:	92	
–  Clouds:	81	
–  DN	Quan'sa'on:	40	
–  Horizontal	Stripes:	29	
–  Ver'cal	Stripes:	16	
–  Burst	Noise:	6	
–  Other	(not	defined	low-quality	pagern):	20	

•  Dust	the	most	common	visual	obscura'on	
•  The	used	set	of	low-quality	pagerns	express	the	Viking	Orbiter	degrada'ons	

–  Only	20	(i.e.	1%)	of	the	low-quality	images	have	some	low-quality	pagern	not	defined	in	
the	list	
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Automa'c	Image	Quality	Assessment	

•  Build	an	automa'c	pipeline	that	will	provide	results	as	close	as	
possible	to	manual	annota'ons	
–  Ill-defined	problem,	since	manual	annota'ons	always	have	a	degree	of	

uncertainty	
•  With	the	5-star	ra'ng	we	model	the	uncertainty	by	defining	that	“correct	automa'c	

annota'on	is	when	the	quality	automa'cally	assessed	is	within	1-star	distance	from	
the	manual	one”.	

•  Two-stage	problem:	
1.  Assess	the	overall	image	quality	
2.  If	the	image	is	found	of	low-quality	(1-star	or	2-star),	es'mate	the	low-

quality	pagerns	found	in	the	image		
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Automa'c	IQA	Pipeline	–	Technical	Specifica'ons	(1)	

•  Image	quality	assessment:	Image	processing	sub-domain	that	
focus	on	the	assessment	of	the	visual	quality	of	an	image	
–  Full-reference	image	quality	assessment:	The	original	image	is	known	

and	an	image	copy	(e.g.	a	compressed	image)	is	compared	to	it	
–  Reduced-reference	image	quality	assessment:	Some	informa'on	about	

how	the	image	content	should	look	like	is	known,	but	the	original	image	
(or	the	“correct”	image)	is	not	available	

–  No-reference	(or	blind)	image	quality	assessment:	No	informa2on	
about	how	the	image	content	should	look		like	is	known	
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Automa'c	IQA	Pipeline	–	Technical	Specifica'ons	(2)	

•  No-reference	image	quality	assessment:	
–  Based	on	the	assump'on	that	low-quality	images	are	not	random	pixel	

matrices,	but	they	present	some	low-quality	pagerns	that	can	be	
modelled	

–  Typically	SoA	methods	try	to	detect	“blurring”	and	“noise”	
•  In	planetary	images,	blur	is	apparent	in	“dust”,	“low	contrast”,	“clouds”,	
“noise”	in	“salt	and	pepper	noise”,	“burst	noise”	

•  Our	approach:	
–  Deep	learning	approach	
–  Extract	6	image	quality	descriptors,	each	expressing	a	different	low-

quality	sub-class	
•  3	from	the	literature	
•  3	newly	developed	

–  Combine	their	classifica'on	scores	into	an	SVM	meta-classifier	
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Quan'ta've	separability	of	high	and	low	quality	images		

•  Preliminary	results	
–  High-quality	images	

•  91%	correct	classifica'on	
–  Low-quality	images	

•  93%	correct	classifica'on	

•  Conclusion:	High	and	low	visual	quality	planetary	images	can	be	
automa'cally	discriminated	using	automa'c	techniques	
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Sub-class	separability	of	low-quality	images		

•  Input	set:	the	correctly	automa'cally	assessed	1-star	and	2-star	
images	

•  Preliminary	results	
–  Only	for	dust	

•  13%	false	acceptance	
•  16%	false	rejec'on	

	
•  It	appears	that	low-quality	pagerns	can	be	also	detected	using	

automa'c	techniques	
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How	to	use	automa'cally	iden'fied	low-quality	pagerns	

1.  Clean	exis'ng	planetary	image	databases	
2.  Place	on-board	a	spacecra_	to	discard	on-the-fly	low-quality	

images,	when	the	imaging	purpose	demands	good	visual	
quality	

–  E.g.	when	agemp'ng	stereo	coverage	
3.  Extract	spa'o-temporal	informa'on	of	low-quality	pagerns		

–  E.g.	detect	areas	and	'mes	that	atmospheric	dust	was	intense	

4.  Compare	with	the	measurements	of	other	instruments		
–  E.g.	compare	atmospheric	dust	measurements	with	the	visual	quality	

degrada'on	that	they	cause	
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Automated	Change	Detec'on	

•  A_er	defining	the	dataset,	cleaning	it	and	co-registering	the	
data,	automa'c	change	detec'on	is	performed.		

•  Change	detec'on	is	performed	in	a	pairwise	manner	
–  “Before”	and	“A_er”	image	

•  Since	input	images	are	firstly	co-registered	to	HRSC,	a	DTM	is	
available	
–  The	resolu'on	difference	may	be	too	large,	so	the	DTM	has	limited	

significance,	but	is	beger	than	nothing	

•  The	basic	idea	is	to	develop	modules,	each	of	which	focus	on	
specific	visual	class	of	changes,	and	combine	the	modules	
output	in	a	(meta-)	classifier	
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Change	Detec'on	Pipeline	Flowchart	

Pa
ge

 3
2 

V
e

rs
io

n:
 0

9/
06

/1
6 

j.m
ul

le
r@

uc
l.a

c.
uk

 

Change	Detec'on	Pipeline	–	First	Module	

1.  Detec'on	of	image	texture	changes	
•  Based	on	SIFT	and	Bag-of-Words	(BoW)	
•  Image	texture	changes	are	correlated	to	a	number	of	surface	

changes	
–  E.g.	gullies,	RSLs,	etc.	

•  Bag-of-Words	
–  Create	a	set	of	“codewords”	that	express	the	texture	of	the	
image	

•  Each	codeword	is	a	SIFT	vector	
–  Project	all	SIFT	points	to	the	“codewords”	and	es'mate	the	
histogram	

–  The	histogram	is	the	image	BoW	representa'on	
•  Within	i-Mars	context,	we	es'mate	a	codeword	for	each	image	and	

a	BoW	for	each	ROI	and	we	es'mate	their	correspondence	
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Change	Detec'on	Pipeline	–	Second	Module	

2.  Blob	Detec'on	
•  The	goal	is	to	detect	homogenously	coloured	irregular	shapes	

(i.e.	blobs)	that	are	present	on	only	one	of	the	two	images	
•  This	is	how	a	number	of	surface	changes	visibly	appear	

–  E.g.	slope	streaks,	new	impact	craters	
•  We	have	developed	a	novel,	random-walk	algorithm	that	

search	in	pairs	of	images	to	detect	blobs	
•  Random-walk	algorithm	basic	principle:	Start	from	an	image	

pixel	and	create	a	path	based	on	a	stochas'c	process	
–  In	each	step	the	next	pixel	is	selected	based	on	the	pixel	

neighbourhood	
–  If	there	is	a	“blob-based”	change	then	the	random	walks	

characteris'cs	differ	in	the	two	images	
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Change	Detec'on	Pipeline	–	Third	Module	

3.  Shape-based	change	detec'on	
•  A	number	of	surface	changes	change	the	shape	of	the	surface	

(e.g.	aeolian	processes)	
•  A	simple	way	to	detect	shape-based	changes	is	through	their	

mutual	registra'on	
•  A_er	matching	the	images	we	triangulate	the	matched	points	

–  Triangles	with	large	areas	mean	that	no	points	were	matched	in	their	
interior,	therefore	the	shape	is	difference	

–  Triangles	with	small	areas	confirm	that	the	area	hasn’t	changed	
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Change	Detec'on	Pipeline	–	Fourth	Module	

4.  Mo'on-based	change	detec'on	
•  All	of	the	above	changes	are	“seman'c	shi_”	changes,	i.e.	the	

surface	on	a	specific	ROI	has	changed	seman'c	meaning	
–  E.g.	a	flat	area	becomes	an	“impact	crater”,	a	slope	streak	fades,	etc.	

•  There	are	changes	for	which	the	change	is	not	correlated	with	
a	“seman'c	shi_”	but	with	“mo'on”	
–  E.g.	dune	migra'on	

•  Theore'cally,	we	can’t	dis'nguish	“local	mo'on”	from	unsystema'c	co-
registra'on	residuals	

•  We	assume	that	there	is	a	local	mo'on	when	
–  The	co-registra'on	residuals	of	a	ROI	are	systema'c	
–  Their	amplitude	is	large	
–  Their	direc'on	is	different	than	the	direc'on	of	any	global	systema'c	

residuals	
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Meta-classifier	
•  Each	module	produce	an	output	for	each	ROI,	which	is	an	es'ma'on	

whether	it	is	changed	or	not	
•  The	goal	is	to	build	a	two-steps	classifier,	with	the	second	step	being	a	

“meta-classifier”,	i.e.	a	classifier	that	takes	as	an	input	individual	
classifica'on	results	

•  The	meta-classifier	would	be	a	Radial	Basis	Func'on	Support	Vector	
Machine	(RBF	SVM)	
–  RBF	SVMs	are	op'mal	in	classifica'on	cases	that	the	input	data	are	of	

low	dimension	
–  The	input	of	this	meta-classifier	is	5-dimensional	

•  4	dimensions	the	output	of	the	4	modules	
•  5th	dimension	the	average	slope	(based	on	HRSC	DTM)	

•  But,	we	don’t	have	any	samples	to	build	a	classifier	
–  We	need	at	least	1,000	samples	(500	posi've	and	500	nega've)	
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Meta-classifier	

	 	 	Thank	you	for	your	help	
	

We	need	at	least	1,000	samples	(500	posi've	and	500	nega've)	
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Next	steps	

•  Collect	the	annota'ons	and	build	a	meta-classifier	
•  Connect	co-registra'on	and	change	detec'on	pipelines	into	1	

pipeline	that	will	allow	us	to	do	full	single-strip	processing,	i.e.	
1.  Select	an	HRSC	single	strip	
2.  Find	all	images	overlapping	with	it	
3.  Automa'cally	co-register	them	
4.  Iden'fy	the	pairs	of	overlapping	images	
5.  For	each	overlapping	pair	perform	change	detec'on	

•  Full	scale	processing	will	start	and	con'nue	un'l	the	end	of	
the	project	
–  Provide	results	to	Jess	for	crowdsourcing	
–  Release	the	results	
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Automated	Change	Detec'on	-	Preliminary	Examples	(1)	
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Automated	Change	Detec'on	-	Preliminary	Examples	(1)	
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Automated	Change	Detec'on	-	Preliminary	Examples	(2)	
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Automated	Change	Detec'on	-	Preliminary	Examples	(2)	
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Automated	Change	Detec'on	-	Preliminary	Examples	(3)	
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Automated	Change	Detec'on	-	Preliminary	Examples	(3)	
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Thanks	


