

i-Mars.eu

	withing	I-I esolutio		Cameras	
Spacecraft	Launch date	Start operations	Finish	Camera instruments	
Viking Orbiter (NASA)	20-Aug-75	22-Jun-76	17-Aug-80	VIS (8m-1km)	
Mars Global Surveyor (NASA)	7-Nov-96	11-Sep-97	5-Nov-06	MOC-NA (1.5m-12m)	
2001 Mars Odyssey (NASA)	7-Apr-01	24-Oct-01	N/A	THEMIS-VIS (17m-75m)	
Mars Express (ESA)	2-Jun-03	25-Dec-03	N/A	HRSC (11m-100m)	
Mars Reconnaissance Orbiter (NASA)	12-Aug-05	10-Mar-06	N/A	CTX (5-6m),HIRISE (0.25m-0.5m)	
Mars Orbiter Mission (ISRO)	5-Nov-13	24-Sep-14	N/A	MCC (19.5m -4km)	
Trace Gas Orbiter (ESA)	14-Mar-16	N/A	N/A	CASSIS (4.5m)	

High-resolution imagery data characteristics

- Almost 500,000 images with resolution finer than 100m/pixel
 - (0 in 1970) ~10K in 1980
 - ~10K in 1990
 - ~50K in 2000
 - ~300K in 2010
- Raw data volume: ~150Tb, adding ~25Tb per year
 - Only the (1) orbiter (2) high-resolution (3) visible spectrum image data
 - Until 2014, each Mars region was mapped on average 5.5 times
 Res < 100m/pix.
- Images coming from very different instruments
 - Different technology (from the 70s until now)
 - Distinct point spread functions
 - Different type of cameras
 - Each image to its own coordinate system!

Version: 08/06/16

j.muller@ucl.ac.uk

age

age

i-Mars.eu

.muller@ucl.ac.uk

age

Basic Definitions (2)

- Image Resolution: The digital equivalent to an analogue map scale
 - What is the maximum detail that can be identified
 - Constant for all pixels <u>if-f</u> the image is orthorectified
- Digital Terrain Model (DTM) or Digital Elevation Model (DEM)
 - A grey-scale where the value of each pixel corresponds to the height of the mapped region
 - Horizontal Resolution: grid-spacing of the DTM (as in a "normal" image)
 - Vertical Resolution: Measurement precision of the heights
- Input image or Target Image or Level-1 Image
 - The input image that we want to co-register

• It is not a systematic requirement

The need for automation (1)

- Original paradigm: Acquired planetary data are given to expert scientists for analysis
 - Any data manipulation is conducted after running a pre-processing step from the same people that will analyse the data
- <u>Current trend 1</u>: Data acquisition and transmission capabilities have increased exponentially the amount of data
 - Viking Orbiter acquired 40Gb of data over 4 years (1976-80)
 - HiRISE camera since 2006 is acquiring 30Gb per day
 - Estimation: Laser transmission technology from orbit to Earth will increase the data amount by at least an order of magnitude
- <u>Current trend 2:</u> Instruments are becoming more elaborate
 - Software has become too complex, sometimes almost undecipherable
 Scientists waste a significant amount of time in pre-processing

Version: 08/06/16

uller@ucl.ac.uk

<u>n</u>

Page 14

- 8 June 2016 11:30-12:30
- 2. Automated change detection from high-resolution coregistered imagery
 - 9 June 2016 10:00-11:00
- 3. Automatic planetary image quality assessment
 - 9 June 2016 10:00-11:00

Fundamental design principle: The developed software should require the minimum user involvement

 Automatic means that you don't need to spend hours tweaking the parameters each and every time

j.muller@ucl.ac.uk

Page 16

j.muller@ucl.ac.uk

1

Page

Developed ACRO Software Characteristics

- **Fully automatic**
 - Can be used as a "black box": the user doesn't need to know anything about the processing chain
- Uses a hard-coded set of parameters
 - No need for parameter adjustment
- Can be used for batch-mode processing
 - CTX: 5 hours/image in a single core
 - THEMIS-VIS: 25 minutes/image in a single core
- It is independent from the baseline type
 - Can be used for co-registration of products from Mars, the Moon, Mercury, etc.
- It has a large resolution range
 - For HRSC baseline (12.5m/pix.), it has been tested on images of resolution

i.muller@ucl.ac.uk

Page 27

Mis-registration errors

- In the case of MOC-NA image m0802650 the distance between the before and after image is 160-170 metres

 Manually selected 25 corresponding points in the two images
 Resolution is 1.11m/pixel: 144-153 pixels difference
 - To make it worse, this is an average value
 - Maximum depends on the standard deviation, which is difficult to be modelled
 - After the co-registration, the average mis-registration error with HRSC is less than 6.25 metres (i.e. 0.5 HRSC pixel)
- When two images are compared, the mis-registration vectors don't coincide, so the distance may be even larger

i-Mars.eu

Freie Universität

Version: 08/06/16

.muller@ucl.ac.uk

Page 33

Version: 08/06/16

ller@ucl.ac.uk

<u>n</u>

bage 34

A little bit about the algorithm

- 1. Extract features from the input image and the baseline image
- 2. Match the features in the two images
- 3. Clean matches to discard outliers
 - Get point correspondences (p,q) in input image with (p',q') in the baseline image
- 4. Find the world coordinates (X,Y,Z) of the pixels (p',q')
 - Use the fact that (1) (p',q') belong to an orthorectified image and (2) correspond to DTM pixels, from which we can estimate the height
- 5. Use the correspondences (p,q) <-> (X,Y,Z) to build a rigid camera model for the input image
- 6. Orthorectify the input image and estimate systematic residuals
- 7. Suppress the systematic residuals and produce the final, ACRO'd image

- 1. Extract features from the input image and the baseline image
- 2. Match the features in the two images
- 3. Clean matches to discard outliers
 - Get point correspondences (p,q) in input image with (p',q') in the baseline image
- 4. Find the world coordinates (X,Y,Z) of the pixels (p',q')
 - Use the fact that (1) (p',q') belong to an orthorectified image and (2) correspond to DTM pixels, from which we can estimate the height
- 5. Use the correspondences (p,q) <-> (X,Y,Z) to build a rigid camera model for the input image
- 6. Orthorectify the input image and estimate systematic residuals
- 7. Suppress the systematic residuals and produce the final, ACRO'd image

Automatic Image Matching (3)

- Second Issue: How to match SIFT points between two images
- Coupled Decomposition¹: Exploit the known geometry of the images to impose geometric (progressively tighter) constraints

¹P. Sidiropoulos and J.-P. Muller, "Matching of large images through coupled decomposition", IEEE Transactions on Image Processing, Vol. 24, No. 7, 2124-2139

Automatic Image Matching (3)

- Second Issue: How to match SIFT points between two images
- Coupled Decomposition¹: Exploit the known geometry of the images to impose geometric (progressively tighter) constraints

¹P. Sidiropoulos and J.-P. Muller, "Matching of large images through coupled decomposition", IEEE Transactions on Image Processing, Vol. 24, No. 7, 2124-2139

Version: 08/06/16

j.muller@ucl.ac.uk

各 age

Automatic Image Matching (4)

- Through coupled decomposition we decompose both images to an adaptive grid
 - Points are compared only to points of the other image that belong to the corresponding cell
- What is achieved through coupled decomposition
 - Faster matching
 - Less false negatives (more tie-points)
 - Less false positives (less outliers)
 - Less sensitivity from the threshold T
 - T is reduced as the grid becomes more dense
- Planetary images come with metadata that can be used on imposing constraints
 - E.g. North direction, image resolution, etc.

.muller@ucl.ac.uk

Page 41

Automatic Image Matching (5)

- Third Issue: How to discard the outliers?
- RANSAC: From a set of points, find the largest sub-set that satisfy some geometric property
- RANSAC fails when the outlier rate is very large •
- Single-instrument pairs
 - Outlier rate: 50-70% (ok for RANSAC)
- Multi-instrument pairs
 - Outlier rate (without coupled decomposition): >95% (RANSAC fails most of the times)
 - With coupled decomposition: 60-90% (RANSAC fails 40-50% of the times)
 - We have developed a RANSAC variation, tuned for planetary images
 - Outlier rate: 40-70%
 - We can match even very low quality images
 - Will be published over the next few months, along with the overall method

Camera Types (3) – Linear Pushbroom Cameras

- · Linear pushbroom camera model
 - Simplify the linear pushbroom camera
- Depends on 11 parameters
 - 3 initial position parameters of the camera
 - 3 initial rotation angles of the camera
 - 3 spacecraft velocities on (X,Y,Z) axis
 - 1 resolution on the CCD-array
 - 1 focal length distance
- At least 6 matched points to estimate the camera model
- Almost all cameras on orbiters are pushbroom cameras
 - HIRISE, CTX, THEMIS-VIS, MOC-NA, HRSC
 - · Viking Orbiter is frame camera (old technology)

Version: 08/06/16

j.muller@ucl.ac.uk

\$

i.muller@ucl.ac.uk

Page 47

Developed Software

- Main script in Matlab[®]
 - Matlab[®] can be used for both scripting and processing
 - (Matlab[®] stands for "matrix laboratory") Matlab[®] has optimised routines for matrix manipulations
 - Images are matrices
 - Matlab[®] has a huge number of build-in functions, routines and a large community of users that share their programmes
- C++ is used for the pipeline parts where we need speed
 - SIFT extraction
 - SIFT point matching
- ISIS is used for pre-processing, denoising, etc.

- Computational time: 5.5 hours/image (CTX), 25 min/image (THEMIS-VIS), 30min/image (MOC-NA)
- Mean Accuracy:
 - CTX: X -> 6.487 metres, Y -> 6.081 metres
 - MOC-NA: X -> 5.334 metres, Y -> 4.851 metres
 - THEMIS-VIS: X -> 7.012 metres, Y -> 6.849 metres

- The pipeline is ready and fully working, processing the imagery of MC11-E
- The processing is done by another person, who isn't familiar with the algorithm
 - Confirm that training is not needed for this task
- Next, we will co-register as much of Mars as possible
 - Apart from SPRC and MC11-W, regions haven't been prioritised yet for scientific applications
 - This is where you can play an important role through collaborations
- We will share our resulting ACRO'd products
- But, we can co-register the imagery of your interest
 - Send an email to p.sidiropoulos@ucl.ac.uk

i.muller@ucl.ac.uk

age 49

Version: 08/06/16

j.muller@ucl.ac.uk

20

age

What we will do next

Co-register high-resolution Mars imagery ٠ Version: 08/06/16 - If possible, all the available images Test the technique to infrared (THEMIS-IR) and CRISM data • Co-register Moon data • - LRO has hundreds of thousands of images that need to be coj.muller@ucl.ac.uk registered - For the Moon, more than one global reference exist Co-register other planetary data ٠ - Mercury, Pluto Page 51 i-Mars.eu

Version: 08/06/16

j.muller@ucl.ac.uk

Page 52