

Grant agreement no. 607379

SPA.2013.2.1-01 - Analysis of Mars Multi-Resolution Images using
Auto-Coregistration, Data Mining and Crowd Source Techniques

- Collaborative project -

D5.3
Stress-test of web-GIS

WP5 - iMars web-GIS Software

Due date of deliverable: month 35 – November 2016

Actual submission date: 14/12/16* (*) EC approval pending

Start date of project: January 1st 2014 Duration: 36 months

Lead beneficiary for this deliverable: Freie Universitaet Berlin (FUB)

Last editor: Sebastian Walter (FUB)

Contributors: UCL, DLR, EPFL

Project co-funded by the European Commission within the Seventh Framework Programme (2007-2013)

Dissemination Level

PU Public x

PP Restricted to other programme participants (including the Commission Services)

RE Restricted to a group specified by the consortium (including the Commission Services)

CO Confidential, only for members of the consortium (including the Commission Services)

 Deliverable D5.3

PU Page 2 Version 2.0

History table

Version Date Released by Comments

1.0 4/11/2016 SW Initial Document

1.1 24/11/2016 SW Submitted to Coordinator

1.2 01/12/2016 JRK Review

1.3 02/12/2016 JPM Review

2.0 13/12/2016 SW Final revisions included,
submitted to Coordinator

 Deliverable D5.3

PU Page 3 Version 2.0

Executive Summary

This document describes the activities of testing the performance of the i-Mars web-GIS

client developed at FUB. It describes in detail both the technical details of the used

performance collection software as well as the methods for putting load on the server.

The server load was tested through concurrent access of the server from ten

simultaneous users performing real-time use of the web application. After the load

testing, it became apparent that the CPU speed and the number of the CPUs/cores are

the most significant limiting factors with terms of performance. Even under heavy load

conditions, the system appeared as responsive and stable. From these results, it is

expected that the software setup ported to the target machines at MSSL will be

performant for at least ten concurrent users.

 Deliverable D5.3

PU Page 4 Version 2.0

Table of contents

History table ... 2

Executive Summary .. 3

Table of contents .. 4

Key word list ... 5

Definitions and acronyms ... 5

1 Introduction ... 6

1.1 Hardware setup ... 6
1.2 Software setup .. 6
1.3 Objectives of the Stress Test .. 8

2 Methods .. 9

2.1 System Statistics Collection ... 9

2.2 Single User Load Placement... 10
2.3 Multi User Load Placement .. 12

3 Summary of activities and research findings .. 15

4 Conclusions and future steps .. 15

 Deliverable D5.3

PU Page 5 Version 2.0

Key word list

web-GIS, MapServer, load testing, benchmark, WMS, WFS, Mapcache, Apache

Definitions and acronyms

Acronyms Definitions

GIS

web-GIS

Geographic Information System

A software service providing access to GIS functionalities over the

web using standard protocols and browsers.

WMS Web Map Service

WMS-T WMS with time support

WFS Web Feature Service

RAM Random Access Memory

DDR Double Data Rate

GB Gigabyte

SAS Serial Attached SCSI

CPU Central Processing Unit

SQL Structured Query Language

TIF Tagged Image File Format

Apache Apache HTTP Server, the most popular web server on the internet

ACRO Automatically Co-Registered and Orthorectified images

Mapserver Open-source platform for publishing spatial data and interactive

mapping

MapCache Stand-alone server that implements tile caching to speed up access

to WMS layers (part of the Mapserver project).

 Deliverable D5.3

PU Page 6 Version 2.0

1 Introduction

The performance and the reliability of the physical server are fundamental aspects of a

web-based GIS platform. It determines the speed and efficiency of the user interaction

with the system. If the application is experienced as being slow and interrupted, the user

will lose interest in the application and leave the web page. As the performance of a

single server hardware is limited by available technology and its price, the data

structure, data storage and retrieval has to be highly optimised for specific applications.

This document reports on the stress testing activities which have taken place at FU

Berlin to optimise the web-GIS performance. It is focused on the access of the data

structures on the server side (raster data, vector data, and attributes), not the possible

software optimisations of the (JavaScript-based) client software, which is highly

dependent on the browser employed by a user and general performance of the client

computer.

1.1 Hardware setup

The load testing was carried out on the developer hardware housed in the server room of

the Institute of Geological Sciences at Freie Universität Berlin. It consists of a Dell

PowerEdge M520 blade unit server enclosed in an M1000 fully-redundant blade

chassis. The blade server contains two Intel Xeon E5-2403v2 CPUs running at 1.8GHz

each (8 total cores, no HyperThreading, no turbo mode). The CPUs were the lowest

specification available processors for this system configuration - as the main target for

the server was the development and it was not intended to host the final application

which is planned to be performed at MSSL. The system’s total memory is 48GB of

dual-rank DDR-3 RAM running at 1333 MHz The system has a built-in disk array of

two small-but-fast (300GB) SAS-based hard drives where the operating system is

located. Further on, it is connected (via 8 GBit/s) to the Fibre-Channel storage network

of the planetary sciences group, where higher volumes of mass memory are dynamically

available (currently there are 8TB assigned). The throughput of the storage should reach

well above 400MB/sec but, as it is based on SATA disks, it is expected that it is not

well suited for high access times operations such as database access. The network

connection is a single gigabit Ethernet adapter connected to a gigabit switch with direct

connection to the German Science backbone.

1.2 Software setup

To be able to use different versions of operating systems and setups, the server system

is virtualised. CentOS version 6.7 serves as the KVM-based hypervisor and a QEMU-

based virtual machine under CentOS 7.2 hosts the actual system. The components of the

system include Apache httpd 2.4.6 (stock CentOS), MapServer 7.0.0 (compilation),

GDAL 2.1 (custom compilation) and Mapcache 1.5 (compilation). The data is stored in

tiled (big-) TIF format images (raster data) and in stock-CentOS PostgreSQL version

9.2.15 databases (vector data).

 Deliverable D5.3

PU Page 7 Version 2.0

The application processes vector data from the PostgreSQL database (footprint

catalogues and additional information as e.g. nomenclature), raster data from TIFs

stored on disks (base-maps, DTMs, images) and serves these as raster (WMS and

WMS-T) and vector data (WFS) via Apache and the MapServer CGI to the client. The

data is mainly served in tiles so that the client machine caches the files in the browser

and the user perceives improved performance while panning and zooming.

All georeferenced files are stored in the same projection they are delivered in (to

minimise “on-the-fly” projection). Where possible, the files are pre-rendered into tiles

using Mapcache to improve the performance of the distribution of the requested data.

Besides static layers like base-maps and coverages, the application serves single images

(ACRO’d products and DTMs/ORIs) in a dynamic way, where a Python/MapScript-

based CGI script creates a WMS layer for the single image on the fly (for a comparison

between the data flows of a regular WMS process, the cached process using Mapcache

and the dynamically loaded images using MapScript, see Figure 1). For these products it

is by design not possible to create tiles in advance. Therefore some amount of lag and

performance slowdown has to be expected when significant numbers of dynamic layers

are shown simultaneously.

Figure 1: Data flow of the different WMS request setups. a) The regular WMS request

is submitted to apache, which calls the MapServer binary via the common gateway

interface (CGI). b) Static layers are cached on the server where possible. Instead of

sending the request to MapServer, it is sent to the MapCache binary which loads tiles,

pre-defined in several zoom levels, from its internal cache. c) In the case of dynamic

images, an additional request parameter is added, the image ID. The request is called

against a MapScript python instance, where the filename of the image is substituted

with the image ID.

 Deliverable D5.3

PU Page 8 Version 2.0

1.3 Objectives of the Stress Test

It is the scope of the current document to analyse the performance and general usability

of the system during both minimally as well as heavily loaded conditions. The stress

testing activities should demonstrate whether the proposed final production server setup

located at UCL will be capable of serving multiple concurrent connections and where

the architecture can be optimised before the transfer and implementation of the software

and data.

We have installed a performance metering software collection system to gather statistics

on the server (collectd, https://collectd.org) and have then performed two stages of

manual load placement on the server. In the first round, the ten volunteer participating

testers used the system exclusively by themselves and therefore under optimal

conditions. They provided qualitative feedback about the usability and performance of

the system and recorded measurements on absolute loading times for certain analysis

tasks. In a second round, all ten testers accessed the server at the same time, to place

some significant load on the server. A plot of the comparison of the system load of both

setups is shown in Figure 2.

a)

b)

Figure 2: comparison of the two stages of the load testing. a) Single user access shows a

maximum system load of 3 to 4, while b) concurrent multi user access shows a load

higher by a factor of 20.

Both campaigns were recorded by collectd and can now be compared. Using this

approach we expect to find the main drivers for the slowdown of the server to improve

both stability and performance.

 Deliverable D5.3

PU Page 9 Version 2.0

2 Methods

2.1 System Statistics Collection

The core measurement software used in this stress test is a system statistics collection

daemon called “collectd” (http://collectd.org). It gathers metrics from various sources,

e.g. the operating system, applications, log files and external devices, and stores this

information in databases. These statistics can be used to find performance bottlenecks

and to predict future system load. To secure the performance and the portability, it is

written in C, and includes the functions to handle thousands of metrics based on a

plugin architecture together with further optimisations. In addition, it also delivers a

small collection of scripts generating concise web graphs based on the collectd data.

For the stress test, we used the following plugins of collectd:

1. Apache. The Apache plugin queries the status module of the Apache web server and

submits the number of bytes transferred, the number of requests received, and

the number of processes in the various states of the scoreboard

(https://collectd.org/wiki/index.php/Apache).

2. CPU. The CPU plugin collects the amount of time spent by the CPU in various

states, most notably executing user code, executing system code, waiting for IO-

operations and being idle. It does not collect percentages, it collects “jiffies”, the

units of scheduling (http://collectd.org/wiki/index.php/Cpu).

3. Disk. The Disk plugin collects performance statistics on the hard-disks and, where

supported, partitions. It reports disk traffic, disk operations, and the number of

operations that could be merged into other, already queued operations, i.e. one

physical disk access served two or more logical operations (the higher that

number, the better); the average time an I/O-operation took to complete; the

io_time - time spent doing I/Os (ms), which represents the device load

percentage (value of 1 sec time spent matches 100% of load); the

weighted_io_time, which measures both I/O completion time and the backlog

that may be accumulating; the pending_operations shows the queue size of

pending I/O operations (https://collectd.org/wiki/index.php/Disk).

4. Interface. The Interface plugin collects information about the traffic (octets per

second), packets per second and errors of interfaces (number of errors during

one second) (https://collectd.org/wiki/index.php/Interface).

5. Load. The Load plugin collects the system load. These numbers give a rough

overview over the utilization of a machine, though their meaning is mostly

overrated. The system load is defined as the number of runnable tasks in the run-

queue and is provided by many operating systems as a one, five or fifteen

minute average (https://collectd.org/wiki/index.php/Load).

6. Memory. The Memory plugin collects physical memory utilization. The values are

reported by their use by the operating system. Under Linux, the categories are

Used, Buffered, Cached and Free (https://collectd.org/wiki/index.php/Memory).

7. Processes. The Processes plugin collects the number of processes, grouped by their

state (e. g. running, sleeping, zombies, etc.).

8. (https://collectd.org/wiki/index.php/Processes).

https://collectd.org/wiki/index.php/Apache
http://collectd.org/wiki/index.php/Cpu
https://collectd.org/wiki/index.php/Disk
https://collectd.org/wiki/index.php/Interface
https://collectd.org/wiki/index.php/Load
https://collectd.org/wiki/index.php/Memory
https://collectd.org/wiki/index.php/Processes

 Deliverable D5.3

PU Page 10 Version 2.0

9. RRD. The RRDtool plugin writes values to RRD-files using librrd

(https://collectd.org/wiki/index.php/RRD).

The collectd software has been set up on the development system in a way that the

metrics provided by the different plugins are accessible via contributed CGI scripts (cf.

Figure 2).

The measurement graphs appear as curved lines over a time axis. In the case of limiting

factors such as limited amount of processes, limited bandwidth or limited CPUs, the

lines become flat at an upper limit.

2.2 Single User Load Placement

During the first phase of the Stress Test, the objective was to find the relevant collectd

metrics which reflect the current degree of capacity utilisation and system load. It was

expected (and to be approved) that the server in its current dimension of hardware

layout would be able to serve one exclusive user, without any additional load. To allow

all participants of the stress test exclusive access to the server, a timetable has been

created, where every participant booked and used the server on its own without

concurrent access by others. During every single test, the collectd metrics were

observed and then saved for later assessment after the test.

In preparation for the test, some instructions were distributed to the users. To rule out

network bandwidth limitations between the tester and the server, a connection speed test

(downloaded from http://speedtest.net) was executed before each test. After the speed

test, the stress test on the web-GIS was performed. It consisted of several stages:

(1) The user should just move around in the map, zoom and pan, without any additional

layers activated. These operations should be mainly served by the Mapcache daemon on

the server, as all the initially activated layers were cached on the server. In this stage,

the main impact was expected on the file system, not the CPU.

(2)Then the user should zoom into the highest possible images, the HiRISE DTMs,

which are not applicable to caching. Here, a larger impact on the disk measurements

was expected.

(3) After that, the user should activate vector layers with footprints loaded from

databases.

(4) Additionally, filtering of the databases employing the time filter functionality so

called WMS-T should make sure that the database tables were not cached and the real

database speed would be tested.

(5) Directly after, the query layers should have been loaded and then example points

with multiple coverage of ACRO images were to be queried. These selections were then

shown as dynamic images. It is expected that this task places the most significant load

on the server, as the large raster images – due to their dynamic nature – can’t be cached

and have to be loaded as individual WMS layers (to be able to flicker through them after

loading). This could lead to concurrent loading of tens to hundreds of WMS raster

layers. It was expected that for this last task, the server should reach its performance

limit already during exclusive single user access (disk and CPU-intensive).

https://collectd.org/wiki/index.php/RRD
http://speedtest.net/

 Deliverable D5.3

PU Page 11 Version 2.0

The users were asked to write down their experiences, measurements, and general

performance impressions during the test. After each of the sessions of single user

access, the collectd graphs have been saved for inspection. This way the key metrics of

the server performance (with regard to the target web-GIS application) could be

determined.

In total, ten users performed the test during different time slots. In terms of results

returned by the collectd system, all the tests showed similar outputs, which are

summarised here. The Apache metrics showed traffic between 0.5 and 2.0 MB/s, around

7 to 12 simultaneous connections and between 10 and up to 35 requests per second. The

CPU usage was between 20 and 70 jiffies with no sign of processor overload (cf. Fig.

3).

Figure 3: Typical CPU measurement during the single user test (one CPU out of 8 – the

diagrams of the others look similar). For an explanation of the cpu states, see e.g. top

man page
1
.

In this particular test, the disk metric shows a sign of higher load in terms of a peak in

the disk IO measurements at around 11:17 in Fig. 4, when the weighted_io_time

reached values of approx. 2,500. Also the disk traffic measurements show a peak at that

time with values of up to 60 MB/s, which should still be well below the possibilities of

the disk system.

1
 http://man7.org/linux/man-pages/man1/top.1.html

 Deliverable D5.3

PU Page 12 Version 2.0

Figure 4: disk IO measurements during the single user test. The graph shows a clear

peak at 11:17 which is a marker for higher load on the server.

The network traffic reached nearly 10 MBit/s, well below the capacity of the server.

There were no significant memory consumption during the measurements which makes

clear that the available memory is not relevant to the performance of the web-GIS. (cf.

Fig. 5). Therefore, the available memory could be used for caching other data sources

which receive a larger slowdown due to the disk architecture.

Figure 5: the measurement of used memory does not show any significant memory

usage during the test.

All participants reported that the web-GIS application was responsive during the whole

test, with the single exception of the loading of the dynamic images. In many cases, it

took not more than 20 seconds to load a specific map setup – a loading time which was

experienced as adequate by the users. The more images that were loaded at once, the

more delay was experienced. This behaviour of the server was expected though, and in

fact turned out better than previously thought. The first stage of the test also served as

an occasion for the testers to use the web-GIS application in an extensive way, get

familiar with the system and its capabilities and limitations. Various feedbacks were

provided to improve the user interface and the stability.

2.3 Multi User Load Placement

To simulate the expected concurrent access to the system, a second stage of the stress

test was carried out. Ten users were asked to access the server simultaneously to bring a

 Deliverable D5.3

PU Page 13 Version 2.0

heavy load to the server and to try to reach the limits of the hardware. To synchronise

the effort and to record exactly which actions lead to eventual slowdown of the

application, a web conferencing system was used during this concurrent manual load

placement. Because of the real time control with the help of the web conference tool,

certain actions could be performed in a very coordinated fashion and the corresponding

time could be recorded – which enabled us to track certain activities in the performance

statistics. The meeting for the stress test started at around 2:00PM on 3 November.

After some general discussions and introduction into the system and the stress test, three

major blocks of different activity were conducted.

1) The first part test, Map Zoom in:

A. Time line: Beginning at 2:35PM and end up at 3:15PM

B. Action: all the users started zooming around the map, without enabling any

additional layers. The task for all the ten users was then to zoom into a

high-resolution HiRISE DTM (which was not cached). Also it was required

during the zooming and panning, that the same area would not been

covered several times, as the browser would then reload the tiles from its

internal cache.

C. The results: a significant slowdown of the server, a subset of one HiRISE

scene in full resolution took up to 50 seconds to completely render. Despite

the long loading time, the feedback from the users was that the system was

still being regarded as responsive, as one could see the loading of the tiles

and the system was not stuck.

2) The second part test, database layer activation

A. Time line: Beginning at 2:46 PM

B. Action: Activation of database layers, by all users concurrently.

C. Results: It was experienced by some users that the system slowed down

significantly. As the slowdown was experienced only by some users, while

the loading of the tiles continued for others, it is assumed that the

performance impact was induced by the limited number of cores and the

weak processing power of the CPUs. Also, the database storage on the

server is not optimised properly, as it is located on slow-but-large disk

storage. It was already expected that at the time of server acquisition that

the database speed would be a problem with such hardware configuration.

However the cost for performance-leveraging high capacity SSD disks was

too high to be considered as a replacement. With regards to the large

amount of unused RAM memory, there are certainly additional methods for

performance tuning of the PostgreSQL database, e.g. setting higher cache

values (shared_buffers option). The final tuning for the database will be

highly dependent on the target system at MSSL equipped with better

processors with more cores and faster disk space.

In Figures 5 to 7, the relevant graphs from the statistics collect daemon are shown. It

demonstrated that the processing power of the CPUs is the limiting variable on the

server (Fig. 5 shows only one of eight graphs for the available CPU cores, but all look

very similar to each other). During all active phases of the test, not only during the most

demanding tasks, the CPUs reached their possible work limit. High disk access is

visible during the loading of the high-resolution HiRISE DTMs at around 2:40PM. The

other processes, including database access, do not seem to have large impact on the

disk. Depending on the disk system at UCL, there is probably not much we can do

 Deliverable D5.3

PU Page 14 Version 2.0

about it to improve it. The caching of pre-rendered tiles at the best resolution level

would most likely go beyond the scope of available disk memory at UCL as well.. The

available RAM has not changed during the whole session; the maximum used value was

2.3 GB, which represents 5% or the total available memory.

Figure 5: Graph of the CPU usage during the concurrent multi-user server access test.

The CPUs are at their limits most of the time even during simple operations.

Figure 6: Graph of the disk IO time of the server during the concurrent multi-user server

access test. The detailed view of non-cached high resolution layers had the most impact

on the server performance.

 Deliverable D5.3

PU Page 15 Version 2.0

Figure 7: Graph of the physical memory utilisation during the concurrent multi-user

server access test. During the test, only about 5% of the available 48GB RAM were in

use.

3 Summary of activities and research findings

To summarise, the following key factors were found to be responsible for the

performance of the web-GIS application:

- CPU: according to the measured statistics, the available processing power was

the biggest limiting factor on the performance. The fact that all eight cores were

loaded with an equal amount of load shows that the application can use all

available processor cores efficiently.

- Disk: at some parts of the test, the disk access played a significant role (during

the panning and zooming of non-cached images).

The physical RAM on the machine appeared to only play a minor role. On the other

hand, the performance of database-related processes could not be measured with the

available metrics.

4 Conclusions and future steps

Given the performed stress test results as presented here, we were able to successfully

find the key factors for critical performance impacts on the server. It turned out during

the test, that the processor speed and the amount of available cores per processor were

fully loaded during regular multi-user access. Disk access became partly important at

size-critical images which could not be pre-tiled beforehand. It turned out that RAM

was not part of the limiting factors of the system.

The tested software will be transferred to the MSSL imaging cluster with better

hardware with regard to CPU and storage, where better performance is expected. The

recommendation here is upgraded CPUs with multiple cores. Storage design should aim

 Deliverable D5.3

PU Page 16 Version 2.0

for short access times which are achievable with equipment such as SSD drives or fast-

spinning SAS drives. Large available disk space enables to pre-render tiles for a large

amount of zoom levels for the static layers. For example, the tile cache of one half-

quadrangle at zoom level 10 (20m/pixel) consumes 3 GB of disk space and it is

quadrupled with every level. Fine-tuning of performance parameters of the database

management system adapted to the target system should improve database access

significantly.

Even on the limited developer hardware, the system was usable with ten concurrent

users and highly demanding tasks. Therefore, it will operate stably for a limited number

of science users though this depends on the number of concurrent users. Our experience

in the past has shown that press releases with linked content to the server can lead to

high access by many users. On the other hand, the application appears as an expert tool

with many sophisticated functions which demand high performance. The target group of

planetary science expert users are expected to take the time to view the “show-and-tell”

YouTube videos and read help pages before or during the use of the software. It should

be mentioned in the documentation that the user has to expect long delay times for

certain functions. For example, the time of loading many dynamic images would last

tens of seconds even on a very fast hardware, but the users are “rewarded” with the

time-based flickering function afterwards. As long as the end users are well informed

with proper documentation, we can expect that they would expect and accept delay

times while working with the application.

